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ABSTRACT

Studying behaviors of members during small group interac-
tion provides objective insights in improving the efficiency of
the decision making process in our daily working life. By
introducing the use of the graph structure in modeling the
natural inter-member conversational ties during such an in-
teraction, we aim to advance the state-of-art computational
approach in predicting group performance scores. Specif-
ically, we proposed a Conversational Graph Convolutional
Network (CGCN) that utilizes conversation dynamic as the
graph to aggregate group member’s speech and lexical behav-
iors in predicting the group performance. Our result shows
that Speech CGCN achieves the state-of-the-art performance
at MSE 3.896 (0.323 Pearson correlation) outperform the cur-
rent best method in ELEA dataset. Our model additionally re-
veals that an imbalance conversational graph structure is pos-
itively correlated to group performances.

Index Terms— small group interaction, group perfor-
mance, graph convolutional network, conversation

1. INTRODUCTION

Small group is a highly structured unit of human face-to-face
interaction defined by a strict number of interacting members:
three to six people [1]; it is one of the most common forms of
interaction styles especially in professional settings or work-
ing environments. This particular type of human interaction
provides critical advantages for improved mechanisms of hu-
man communication, such as sharing knowledge, stimulating
ideas, dividing specialized works, that often lead to a more ef-
fective and a higher quality of decision making process [2, 3].
During such an interaction, each member of the group com-
municates with each other through both verbal and nonver-
bal behaviors in order to convey ideas and jointly complete a
given task. The performance outcome of each group on their
collaborative talk and the emergent leadership within each
group has commonly been considered as result of the unique
behavioral interaction dynamics between members [4, 5].
The complex and intricate behavioral interaction dynam-
ics between members have sparked a growing interest for
computational researchers to analyze behaviors of the mem-
bers during small group interactions recently. In fact, several
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public releases of the multimodal corpus, e.g., ELEA [6],
GAP [7] and UGI [8], provide well-thought-out scenarios
and conversational behavior data to enable computational
studies on small group interactions. There are a couple of re-
cent works in developing advanced deep learning frameworks
in joint modeling vocal behaviors and personality [9, 10]. In
terms of predicting group performances, most of the previ-
ous works have focused on designing features on member’s
behaviors, e.g., turn-taking dynamics, lexical coherence, or
non-verbal dynamics [11, 12].

While these approaches have established the basic foun-
dation on understanding the relationship between behaviors
of individual members during small group interaction and
task performances, these works do not model the structure
between members during the interaction, and the technical ap-
proaches are often sub-optimal compared to the current state-
of-the-art machine learning. In group studies, researchers
have argued the existence of a static network structure that
can be used to characterize team efficiency in small group
communication [13]. As an extension of the static structure,
using the network as an aggregation of social interaction pat-
terns over time also lead to applications in analyzing other
virtual interaction data, such as e-mail streams in a team
[14, 15]. In this work, we propose to model the real-world
small group face-to-face behavioral interaction using a graph
structure with conversational dynamics as the graph building
block in order to perform task performance prediction.

Specifically, we propose a Conversational Graph Con-
volutional Network(CGCN) to predict AGS (absolute group
score) in ELEA corpus based on members’ speech and lexical
features. This framework is inspired by the successful usage
of graph convolutional network (with its ability in empha-
sizing the structural relationship on the data with non-grid
structure [16]) for applications such as edge prediction in
social network [16] or even chemical structure classification
[17]. Our result shows that Speech CGCN can achieve the
performance at MSE 3.896 and 0.323 Pearson correlation. It
outperforms the current state-of-the-art tree-based method in
the same dataset by 0.211 MSE and 0.115 Pearson correla-
tion. Our further analysis shows that a more imbalance graph
structure of the group conversation is positively correlated
with higher group performances.
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Fig. 1. Our Proposed Conversation Graph Convolutional Network: three main parts are included in the figure, the speakers’
behavior feature X; where ¢ = a, b, ¢, d, the edge weights of conversational graph A;; and the architecture of our CGCN model.

2. METHODOLOGY

2.1. Databases

Three datasets, i.e., ELEA[6], GAP[7] and UGI[8], are used
in this paper. The Emergent LEAder (ELEA) corpus is one
of the largest multimodal group interaction databases that
has facilitated many small group interaction studies. In this
work, our algorithm is evaluated in ELEA dataset. In ELEA
dataset, group members are asked to imagine themselves as
the survivors of an airplane crash, and they need to rank
12 objects according to the order of importance in order to
survive through winter. The absolute group scores(AGS) on
the task are calculated by summing the absolute differences
between the group ranking and the expert ranking for each
item. The ELEA dataset includes 29 groups with English
speaking are used in our paper, GAP(28 groups) and UGI(22
groups) datasets are used in this work as data augmentation
for ELEA dataset to stabilize and improve the prediction ac-
curacy. GAP and UGI datasets are two newly collected small
group datasets also designed with a similar survival scenarios.

2.2. Behavior Feature Extraction

2.2.1. Speaker’s Acoustic Feature

ELEA includes manually segmented utterances for each
speaker in the group. We first extract the INTERSPEECH
2010 ComparE Challenge feature set using the openSMILE
toolkit [18] on each sentence. It contains statistical func-
tionals operated on acoustic low-level descriptors (LLDs),
including jitter, shimmer, MFCC, associated delta features,
PCM loudness, FO envelope, FO contour, and voicing prob-
ability. We follow the work of Murray and Oertel [12] to
select standard deviation-related features only from the orig-
inal set. This results in a final set of 76 dimensions for each
sentence. Finally, for each speaker of an interaction, we av-
erage all his/her sentence-level features to obtain the final 76
dimensions of session-level acoustic features.

2.2.2. Speaker’s Lexical Feature
The lexical features are obtained using a pre-trained bidirec-
tional skip-thought [19] sentence embedding for each sen-

tence from the transcript given by ELEA. The skip-thought
vectors are learned by using an unsupervised learning frame-
work of an encoder-decoder structure composed by GRU-
RNN. In our task, the sentence embedding of 2400 dimen-
sions is obtained for each utterance of a given speaker. We
then obtain the final session-level speaker’s 2400 dimensional
lexical feature by averaging all of his/her sentences.

2.3. Conversational Graph Convolutional Network

For each of the k;; group, we first form an undirected graph
with a set of conversational weight F(; and the speaker’ s
behavior feature X5y = {x;} where j = 1,..., N (with a
group size of N), i.e., G(x) = (E(x), X(x)). For each graph
G(1), there is a corresponding absolute group score y) €
Yiaper- In essence, our proposed CGCN framework learn the
mapping between the pair of (G, Yiabel)-

2.3.1. Conversational Graph

The adjacency matrix A is constructed to represent the struc-
ture of the group G. First, we take all of the utterances in
the interaction and form a conversation speaker sequence (a
sequence indicating the order of speaking for each member
in the conversation). We further use a sliding window win
with a fixed window size L = 4 and step size S = 4 to
count the total number of times over the entire conversation
sequence that each pair of the speakers co-occurs within the
sliding window. Assume that in the k;;, group, it has N group
members, we would have the symmetric matrix A with size
of N x N as our undirected graph. In other word, the value of
the element A;; = Aj; is defined as follow,

A =
J 1 =7

{ normalize(#win(i,j)) ,i#j

where #win(i,j) is the number of sliding windows in the
conversation speaker sequence that contain both member ¢
and member j. We further define the edges set e includes
Negges non-self connected edges in a graph, where Negges
equals to combination of choosing 2 member from the group
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size N, i.e., Negges = % The normalize method of the

graph is then defined as follows:

normalize(ey) = softmax(

)W
mazx(e)
Hence, the summation of the normalized non-self-connected
edges set normalized(e) equals to 1. Intuitively, this con-
versational graph connects two members of the group with a
higher edge weights when they tend to converse more often
in vicinity of each other.

2.3.2. Conversational Graph Convolutional Network

Our proposed CGCN model contains 2 GCN layers and 1
feedforward linear layer (complete architecture is demon-
strated in Figure 1). We first calculate

A=D3AD"*

where D is a diagonal degree matrix, 15“ => =0 A;j. Then,
we can pass our behavior features X through the following 2
layers of GCN to obtain the group structural representation 7,

Z = f(X,A) = mean(AReLU (AXW)w1)

where W1l is a layer-specific trainable weight matrix. Fi-
nally, we perform the prediction by mapping the group repre-
sentation Z to 1-dim group performance score Yy, cqict by

}/1?7'edict = W[Q]Z + b[QJ

Since the dimension of W only concerns the feature di-
mension from feature size of previous layer to next layer, it is
able to be trained and updated across different size of groups.
All of the parameters of our CGCN are updated by using the
following loss function,

2
Loss = Z MSE(leabel; Ypredict) + A Z(W[n])2
batch n=0

where we use the mean square error as loss function and add
the [, regularization term with parameter \ to prevent overfit-
ting. All the parameters are updated batch-wised.

3. EXPERIMENT SETUP AND RESULT

3.1. Experimental Setup

We evaluate our proposed method in improving the Absolute
Group Score(AGS) prediction performance on ELEA corpus
using the metric of MSE (Mean Square Error) and Pearson
correlation. The Random Forests model is used to be our
baseline since previous work [12] has showed that Random
Forests is a well performing model on this prediction task.
The number of estimators for tree is set at 20, which is the
same setting as in [12]. In order to be consistent with re-
cent works on prediction performance in this database [11],
we transform the original score to the normalized AGS to the
range from 1 and 10 using the MinMaxScaler.

3.1.1. Data Augmentation

We further include two external datasets of similar setting,
UGI and GAP, as augmented data to be used inside each train-
ing fold when learning our proposed CGCN. We first provide
a weak label for each sample of UGI and GAP by using a
simple Random Forest trained on the training folds of ELEA
dataset. Hence, in specifics, we have three different condi-
tions of data augmentations: 1) using GAP to include extra
28 samples, 2) using UGI to include 22 data samples, and 3)
using both GAP and UGI to include 50 samples. UGI dataset
only has text modality, hence, it is only used for data augmen-
tation when training text CGCN.

3.1.2. Detail Model Parameters

Our proposed CGCN is trained with 2 different parameters
separately on speech and textual feature. For text CGCN
model, we have our model parameters W10, Wl and W2
with the matrix size as [2400 * 32], [32 * 32] and [32 * 1].
For the speech CGCN model, we have our model parameters
Wl Wil and W2 with size of [76 % 32], [32 % 16] and
[16 % 1]. The parameter of CGCN on 2 different modalities
are both trained with the ADAM [20] optimizer with learning
rate equals to 0.01, batch size equals to 5 and the A equals
to 0.0005. We used leave-one-out cross validation with same
parameter setting to evaluate our model. Each of the models
are trained with 20 different random seeds, and the mean, std
and the best results of models are presented.

3.2. Experimental Result and Analysis

Our proposed Speech CGCN method achieves an overall best
performance at MSE 3.896 and 0.323 Pearson corr. on ELEA
absolute group score prediction task. It outperforms random
guessing baseline by 0.663 MSE and 1.323 Pearson corr. im-
provement. Our method also outperforms baseline tree-based
method [12] on lexical modality by 0.211 MSE and 0.115
Pearson corr.. As the result shown in Table 1, our CGCN
model generally improves by including the augmented data
from UGI and GAP. This improvement can be observed on
both speech and text modality. In contrast, although using
Random Forest model shows a better performance when
training directly only with the ELEA data sampels, it does
not improve further when using augmented data.

For text modality, without data augmentation, Text CGCN
achieves a moderate 4.703 MSE and 0.213 Pearson corr.,
which performs worse than the best performance 4.107 MSE
and 0.208 corr. using Random Forest. However, when using
GAP as augmented data, the best performance improves 0.7
MSE, and the average performance also improves 0.4 MSE.
Similarly, when using UGI as the augmented data, the best
performance improves 0.671 MSE, and the average perfor-
mance also improves 0.4 MSE. When augmented with both
datasets, we obtain improvement on average of 0.534 and
decrease prediction variance (std goes from 0.435 to 0.239).

For audio modality, with only ELEA corpus, Speech
CGCN can achieve 4.259 MSE and 0.198 Pearson corr.,
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Text Speech
Model Type | Augmented Data MSE Range | Best MSE | Best Pearson | MSE Range | Best MSE | Best Pearson
Mean - 4559 -1.00 4559 -1.00
Guessing
- 4.896 £ 0.342 4.107 0.208 6.4 +0.383 5.677 -0.039
Random GAP 5.131 +£0.435 4.139 0.100 6.045 + 0.362 5.339 -0.045
Forests UGI 4.758 £ 0.305 4.31 0.187 - - -
GAP+UGI 5.301 £ 0.325 4.709 0.003 - - -
- 5.33 £0.435 4.703 0.213 5.16 £ 0.448 4.259 0.198
CGCN GAP 4.934 +0.342 4.07 0.229 4.726 4+ 0.499 3.896* 0.323*
UGI 4.886 4 0.467 4.034* 0.282% - - -
GAP+UGI 4.8 +£0.239 4.172 0.203 - - -

Table 1. Comparison between the performance of our proposed CGCN and the Random Forests on sentence level verbal and
nonverbal feature. Noted that the MSE here is calculated based on the normalized AGS score (1 to 10) mentioned in section 3.1

’ Type \ # \ Feature \ Best MSE ‘
Avci & Aran[21] 40 | sp. + turn-taking 71.3
Murray & Oertel[12] | 28 Sp.+text. 64.4
Our Method 29 sp. 66.7 (3.90)
Our Method 29 text 71.9 (4.03)
Our Method 29 sp. + text. 78.5(4.40)

Table 2. Comparison to the related work on ELEA using text
and speech feature. We provide the number of data sample
and the corresponding feature types for proper comparison.
For our method, the equivalent AGS score in both normalized
or non-normalized term is presented.

which is already better than the best performance 5.677 MSE
and -0.039 corr. using Random Forest. By using augmented
GAP dataset, the best performance achieved is 0.389, which
is 0.363 improvement on MSE and the overall average per-
formance also improves 0.424 on MSE. We also present the
equivalent MSE score (without min-max scaling) in order to
compare with two other methods on predicting group per-
formance score on the same dataset (table 2). Our proposed
model consistently outperforms previous model proposed by
Avci et al. [21]. It also achieves similar performance com-
pared to Murray and Oertel [12] though their textual features
are extremely complex and provides a non-intuitive approach
in analyzing small group structure.

3.3. Analysis of Graph Structure

Since our CGCN encodes the conversational structure be-
tween member behaviors within the group, we further analyze
the relationship between graph structure and the group score.
We evaluate the imbalance level of each group’s structure by
calculating the edges differences between balance structure
and imbalance structure. In specific, the balance structure
is defined with the edges weight Ne;ges. The structure im-

balance level (SIL) measure for the gfoup k are defined as

follows: N
S en — g

Nedges

SIL, =

We observe an interesting insight that the SIL value has a
Pearson corr. -0.391 with the AGS score in ELEA corpus.
It indicates that the more imbalanced structure leads to a bet-
ter group performance. In plain words, our analysis demon-
strates that for those groups that have key members talk and/or
facilitate the interaction would lead to a better overall group
performance score; this results corroborate with past findings
on the relationship of centralized structures and group perfor-
mances [13, 22, 23] and further imply the connection to the
emergent leadership [24].

4. CONCLUSION AND FUTURE WORK

Recently, computationally studying small group dynamics by
using the member’s behavior data has gradually become more
important in understanding key factors in an efficient and ef-
fective decision-making process. In this work, we proposed
an automatic prediction framework of Conversational Graph
Convolutional Network that jointly models the explicit con-
versation structure as the graph with speech and language be-
havior features, we obtain the state-of-the-art prediction of
group performance score on ELEA dataset. The usage of
the graph-based deep learning network provides an intuitive
mechanism in studying the dynamics between team members.
In the future, we would like to include a recently collected
larger corpus to evaluate the robustness of our results and fur-
ther advance the framework with the multimodal fusion of
behavior data.
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